A Rare New Cleistanthane Diterpene from the Pericarp of Trewia nudiflora

by Zhi-Zhi Du and Yue-Mao Shen*

Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, P. R. China (phone: +86-871-5223111; fax: +86-871-5150227; e-mail: yshen@mail.kib.ac.cn)

A minor, unprecedented diterpene, 3β ,17-dihydroxycleistantha-12,15-dien-2-one (1), was isolated from the CHCl₃-soluble part of the EtOH extract of the pericarp of *Trewia nudiflora*. The structure of 1 was elucidated by means of 1D- and 2D-NMR spectroscopic analyses as well as by HR-MS. Also isolated were two known triterpenes, glutin-5-en-3-ol and olean-18-en-3-one (germanicone), as well as three known sterols, (22E,24R)- 5α ,8 α -epidioxyergosta-6,22-dien-3 β -ol, (22E,24R)- 5α ,8 α -epidioxyergosta-6,9(11),22-trien-3 β -ol, and (22E,24R)-6-methoxyergosta-7,22-dien-3,5-diol.

Introduction. – *Trewia nudiflora* L. (Euphorbiaceae) is a tropical plant mainly distributed in India, Malaysia, and South China [1]. The seeds of *T. nudiflora* contain highly unusual glyceride oils [2], several novel pyridinone alkaloids [3], and an inhibitor of protein synthesis [4]. The seeds are also a rich source of maytansinoids [5–7]. The EtOH extract of *T. nudiflora* was shown to have antifungal activity against *Penicillium avellaneum* UC-4376.

In our previous work on this extract, we had reported three new *ent*-atisane diterpenes and several known compounds [8]. Now, we report the isolation and structure elucidation of a rare new cleistanthane diterpene (1). Compound 1 was isolated together with two known triterpenes, glutin-5-en-3-ol and olean-18-en-3-one (germanicone), and three known sterols, (22E,24R)-5 α ,8 α -epidioxyergosta-6,22-dien-3 β -ol, (22E,24R)-5 α ,8 α -epidioxyergosta-6,9(11),22-trien-3 β -ol, and (22E,24R)-6-methoxyergosta-7,22-diene-3,5-diol.

Results and Discussion. – Diterpenes with a cleistanthane (=14-ethyl-13-methylpodocarpane) skeleton are uncommon in Nature. The first members of this series were isolated from species of the family Euphorbiaceae, and all known cleistanthane diterpenes from this family reported so far contain an aromatic C-ring [9–12]. In our ongoing search for bioactive natural products, we now report the isolation of the rare new

cleistanthane diterpene **1** from the EtOH extract of *T. nudiflora*. Compound **1** was found to have a nonaromatic *C*-ring.

Compound 1, obtained as a colorless gum, had the molecular formula $C_{20}H_{30}O_3$, based on its HR-EI-MS data (m/z 318.2192 (M^+ ; calc. 318.2195)). The IR spectrum showed the presence of OH (3442) and C=C (1636 cm⁻¹) functions. The ¹H-NMR Spectrum of 1 (Table) showed three Me *singlets* at $\delta(H)$ 0.71, 0.83, and 1.18, and two *doublets* at $\delta(H)$ 3.94 and 4.05 assigned to a CH₂OH group connected to a quaternary C-atom, as well as another *singlet* at $\delta(H)$ 3.94 for an oxygenated methine. Further, four olefinic H-atoms at $\delta(H)$ 5.17, 5.18, 5.52, and 5.79 were observed.

Table. ¹*H- and* ¹³*C-NMR Data of* **1**. At 400/100 MHz, resp., in CDCl₃; δ in ppm, J in Hz.

Position	¹³ C	1 H	HMBC $(H \rightarrow C)$
1	51.5 (t)	2.51 (d, J=12.8)	C(2), C(3), C(5), C(10)
		2.22 (d, J=12.4)	C(2), C(9), C(10), C(20)
2	211.0(s)	-	_
3	82.6 (d)	3.94 (s)	C(2), C(4), C(18), C(19)
4	45.6(s)	-	_
5	53.4 (d)	1.60 (dd, J=2.4, 12.4)	C(4), C(6), C(10), C(19), C(20)
6	21.2(t)	1.78 (m), 1.42 (m)	C(5), C(7), C(8)
7	32.6 (t)	1.05, 2.18 (2m)	C(5), C(6)
8	36.6 (d)	$1.30 \ (m)$	C(10), C(11)
9	49.8 (d)	1.39 (m)	C(5), C(8), C(10), C(11), C(20)
10	43.5 (s)	-	_
11	23.9(t)	1.98 (m)	C(8), C(12), C(13)
12	123.0(d)	5.79 (br. $d, J = 5.6$)	C(11), C(14), C(7)
13	137.0 (s)	_	_
14	50.6 (d)	2.48 (br. $t, J=9.6$)	C(15), C(16)
15	140.4 (d)	5.52 (dt, J=10.0, 16.8)	C(8), C(13), C(14), C(16)
16	117.6 (t)	5.18 (dd, J=2.0, 10.0)	C(8), C(14), C(15)
		5.17 (dd, J=1.6, 16.4)	
17	65.5 (t)	4.05 (d, J=12.8)	C(12), C(13), C(14)
		3.94 (d, J=12.8)	
18	29.2(q)	0.71(s)	C(2), C(3), C(4), C(5), C(19)
19	16.7 (q)	1.18(s)	C(3), C(4), C(5), C(18)
20	14.4 (q)	0.83(s)	C(1), C(5), C(9), C(10)

The 13 C-NMR (DEPT) spectrum of **1** showed 20 carbon signals: three Me groups at tertiary C-atoms, six CH₂ and seven CH groups, and four quaternary C-atoms, including a keto function at δ (C) 211.0, an oxygenated tertiary C-atom at 82.6, an oxygenated CH₂ at 65.5, and four olefinic resonances at δ (C) 117.6 (t), 140.4 (t), 123.0 (t), and 137.0 (t). Of the six degrees of unsaturation required by the molecular formula, one was accounted for by the C=O group and two by the C=C bonds, indicating that **1** was a tricyclic diterpene.

The $^1\text{H},^{13}\text{C}$ long-range correlations between the H-atoms of the three Me groups ($\delta(\text{H})$ 0.71, 0.83, 1.18; $\delta(\text{C})$ 16.7, 14.4, 29.2, resp.) and the corresponding C-atoms (*Table*) established a nine-carbon residue. Moreover, HMBC experiments indicated that $\delta(\text{H})$ 2.51 and 2.22 (CH₂(1)) had $^1\text{H},^{13}\text{C}$ long-range correlations with $\delta(\text{C})$ 211.0

(C(2)), 82.6 (C(3)), 53.4 (C(5)), and 43.5 (C(10)), suggesting that C(1) was linked to C(3) via a C=O group at C(2) (fragment **A**, Fig. 1).

Fig. 1. Indentified fragment structures A-C of compound 1

The ${}^{1}\text{H}$, ${}^{13}\text{C}$ long-range correlations of both the olefinic H-atoms ($\delta(\text{H})$ 5.79, 5.52, 5.17, 5.18) and the OCH₂ H-atoms with the corresponding carbon resonances established the eight-carbon fragment **B** (*Fig. 1*), as supported by ${}^{1}\text{H}$, ${}^{1}\text{H}$ -COSY crosspeaks. Moreover, H–C(9) at $\delta(\text{H})$ 1.39 was also linked to **B**. The ${}^{1}\text{H}$, ${}^{1}\text{H}$ -COSY data of **1** further established the five-carbon residue **C**. Based on the key H-atoms H–C(5), H–C(9), and H–C(14) in the above three fragments, they were linked together as shown in the chemical formula to form **1**.

The relative configuration of **1** was determined by NOE experiments (*Fig.* 2). Key NOEs were observed between H_{β} –C(1) (δ (H) 2.22) and H_{β} –C(7) (δ (H) 1.05); between H–C(3) and H–C(5), H_{α} –C(7) (δ (H) 2.18) and Me(18); between H–C(5) and both H–C(9) and Me(18); between H_{α}–C(6) (δ (H) 1.78) and both H–C(9) and Me (18); between H–C(9) and both H_{α} –C(6) and Me(18); between Me(19) and both H_{β} –C(6) (δ (H) 1.42) and Me(18); and between Me(20) and H_{β} –C(6), H–C(8), H–C(11), and H–C(14), respectively. From the above data, the structure of **1** was determined as 3β ,17-dihydroxycleistantha-12,15-dien-2-one (= (3β ,14 α)-14-ethenyl-3-hydroxy-13-(hydroxymethyl)podocarp-12-en-2-one).

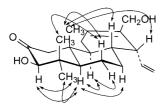


Fig. 2. Key NOESY correlations of 1

This work was partially supported by the *National Natural Science Foundation of China* (30400038) and *the National Science Fund for Distinguished Young Scholars* (to Y.-M. S.; 30325044). The authors are grateful to the analytical group of the Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, for recording IR, NMR, and mass spectra.

Experimental Part

General. Column chromatography (CC): silica gel (200–300 and 80–100 mesh; Qingdao Marine Chemical Factory, Qingdao, P. R. China); reverse-phase C_{18} silica gel (Merck) or Sephadex LH-20 (Amersham Biosciences). TLC: precoated TLC plates (Silica gel GF_{254} , Qingdao Marine Chemical Factory),

detection by spraying with 5% $\rm H_2SO_4$ soln. M.p.: *XRC-1* Micro-melting-point apparatus; uncorrected. Optical rotations: *JASCO DIP-370* digital polarimeter. IR Spectra: *Bio-Rad FTS-135* IR spectrometer, with KBr pellets; in cm⁻¹. NMR Spectra: *Varian Inova-400* and *Bruker AM-400* or *DRX-500* NMR spectrometers; δ in ppm rel. to Me₄Si, *J* in Hz. MS: *VG AutoSpec-3000* mass spectrometer; in m/z (rel. %).

Plant Material. The pericarp of *Trewia nudiflora* was collected in Xishuangbanna, Yunnan Province, P. R. China. A voucher specimen (K. M. Feng 20159) was deposited at the Herbarium of the Kunming Institute of Botany, Chinese Academy of Science, Kunming.

Extraction and Isolation. The air-dried pericarp of T. nudiflora (3 kg) were ground and extracted with boiling 95% EtOH (3×). The combined extracts were concentrated in vacuum on an evaporator. The residue was suspended in H₂O and then extracted successively with a) petroleum ether (PE), b) CHCl₃, and c) BuOH. The PE extract (a) (16 g) was subjected to CC (300 g SiO₂; PE/CHCl₃1:1 \rightarrow 0:1, then CHCl₃/ acetone 20:1 \rightarrow 0:1). The fraction (70 mg) eluted with PE/CHCl₃ 1:2 was resubjected to CC (1. SiO₂, PE/AcOEt 100:1; 2. Sephadex LH-20, acetone) to yield olean-18-en-3-one (7 mg). The fraction eluted with CHCl₃ afforded glutin-5-en-3-ol (8 mg) after repeated fractionation by CC (1. SiO₂, PE/AcOEt 15:1; 2. Sephadex LH-20, acetone). The original CHCl₃ extract (b) (9.5 g) was subjected to MPLC $(130 \text{ g } C_{18} \text{ gel } (40-63 \mu\text{m}); \text{MeOH/H}_2\text{O} 5:5, 7:3, 10:0), \text{ which afforded three fractions } (Fr. 1-3). Fr. 2$ (bioactive) was further separated to yield seven subfractions: Fr. 2.1-2.7. Fr. 2.3 (bioactive) was separated by CC (Sephadex LH-20; MeOH) to afford two further subfractions. Fr. 2.3.2 was resubjected to CC (SiO₂; CHCl₃/acetone 20:1) to afford compound 1 (3 mg). Fr. 3 was subjected to CC (80 g SiO₂; CHCl₃/Me₂CO 100:0 \rightarrow 100:3) to afford two subfractions. Fr. 3.a was further purified by CC (C_{18} $(40-63 \mu m)$; acetone/H₂O 3:1) to yield (22E,24R)-5 α ,8 α -epidioxyergosta-6,9(11),22-trien-3 β -ol (5 mg). Fr. 3,b was resubjected to repeated CC (C₁₈ (40-63 μm); acetone/H₂O 4:1) to afforded (22E, 24R)-5a,8a-epidioxyergosta-6,22-dien-3β-ol (10 mg) and (22E,24R)-6-methoxyergosta-7,22-dien-3,5-

Antifungal Activity. The activity against *Penicillium avellaneum* UC-4376 of each fraction of the CHCl₃-soluble part of the EtOH extract was determined during compound purification by means of the disk-diffusion assay on agar plates, as described previously [13].

 $3\beta,17$ -Dihydroxycleistantha-12,15-dien-2-one (=(3 β ,14 α)-14-Ethenyl-3-hydroxy-13-(hydroxymethyl)podocarp-12-en-2-one; 1). Colorless gum. M.p. $106-108^{\circ}$. [α] $_{D}^{25}$ = +27.0 (c=0.1, MeOH). IR (KBr): 3442, 3227, 2926, 1636, 1463, 1197. 1 H- and 13 C-NMR: see the *Table*. EI-MS: 318 (100, M^{+}), 300 (8), 274 (27), 245 (17), 227 (38). HR-EI-MS: 318.2192 (M^{+} , C_{20} H₃₀O $_{3}^{+}$; calc. 318.2195).

Olean-18-en-3-one (Germanicone). Colorless needles. ${}^{1}\text{H-}$ and ${}^{13}\text{C-NMR}$: see [14]. EI-MS: 424 (8, M^{+}), 409 (10), 218 (56), 204 (56), 203 (42), 189 (76), 177 (100).

Glutin-5-en-3-ol. Colorless needles. 1 H- and 13 C-NMR: see [15]. EI-MS: 426 (2, M^{+}), 408 (3), 274 (90), 259 (100).

(22E,24R)-5α,8α-Epidioxyergosta-6,22-dien-3β-ol. Colorless needles. 1 H-NMR (400 MHz, C_5D_5N): 0.75 (s, Me(18)); 0.84 (m, Me(26,27)); 0.88 (s, Me(19)); 0.94 (m, Me(28)); 1.01(d, J=6.4, Me(21)); 4.37 (m, H–C(3)); 5.13 (m, H–C(22)); 5.27 (m, H–C(23)); 6.31 (d, J=8.4, H–C(6)); 6.52 (d, J=8.4, H–C(7)). 13 C-NMR (100 MHz, C_5D_5N): 13.0 (q, C(18)); 17.8 (q, C(28)); 18.4 (q, C(19)); 19.9 (q, C(27)); 20.2 (q, C(26)); 21.1 (q, C(21)); 21.2 (t, C(15)); 23.7 (t, C(11)); 29.1 (t, C(16)); 31.3 (t, C(2)); 33.0 (d, C(25)); 35.5 (t, C(1)); 37.5 (s, C(10)); 38.3 (t, C(4)); 39.6 (t, C(12)); 40.1 (d, C(20)); 43.1 (d, C(24)); 44.7 (s, C(13)); 51.9 (d, C(9)); 52.1 (d, C(14)); 56.3 (d, C(17)); 65.9 (d, C(3)); 79.3 (s, C(8)); 82.3 (s, C(5)); 130.9 (d, C(7)); 132.3 (d, C(23)); 135.9 (d, C(22)); 136.2 (d, C(6)). EI-MS: 428 (8, M⁺), 410 (60), 396 (100), 376 (25), 363 (15), 337 (25), 301 (10), 251 (30).

(22E,24R)-5*a*,8*a*-Epidioxyergosta-6,9(11),22-trien-3β-ol. Colorless, amorphous powder. ¹H-NMR (400 MHz, CDCl₃): 0.71 (*s*, Me(18)); 0.80 (*d*, *J* = 6.4, Me(27)); 0.81 (*d*, *J* = 6.8, Me(26)); 0.89 (*d*, *J* = 6.8, Me(28)); 0.98 (*d*, *J* = 6.4, Me(21)); 1.06 (*s*, Me(19)); 4.01 (*m*, H–C(3)); 5.15 (*dd*, *J* = 15.2, 7.2, H–C(22)); 5.27 (*dd*, *J* = 15.2, 8.0, H–C(23)); 5.41 (*dd*, *J* = 6.0, 0.8, H–C(11)); 6.27 (*d*, *J* = 8.4, H–C(6)); 6.58 (*d*, *J* = 8.4, H–C(7)). ¹³C-NMR (CDCl₃): 12.9 (*q*, C(18)); 17.5 (*q*, C(28)); 19.6 (*q*, C(27)); 19.9 (*q*, C(26)); 20.7 (*q*, C(21)); 20.8 (*t*, C(15)); 25.5 (*q*, C(19)); 28.6 (*t*, C(16)); 30.5 (*t*, C(2)); 32.5 (*t*, C(1)); 33.0 (*d*, C(25)); 36.0 (*t*, C(4)); 37.9 (*s*, C(10)); 39.9 (*d*, C(20)); 41.1 (*t*, C(12)); 42.7 (*d*, C(24)); 43.6 (*s*,

C(13); 48.1 (d, C(14)); 55.8 (d, C(17)); 66.3 (d, C(3)); 78.3 (s, C(8)); 82.7 (s, C(5)); 119.7 (d, C(11)); 130.7 (d, C(7)); 132.4 (d, C(23)); 135.1 (d, C(22)); 135.4 (d, C(6)); 142.4 (s, C(9)). EI-MS: 426 (10, M^+), 410 (8), 394 (40), 376 (30), 299 (20), 251 (38).

(22E,24R)-6-Methoxyergosta-7,22-dien-3,5-diol. Colorless, amorphous powder. 1 H-NMR (400 MHz, CDCl₃): 0.57 (s, Me(18)); 0.82 (d, J = 6.8, Me(26)); 0.80 (d, J = 6.4, Me(27)); 0.90 (d, J = 6.8, Me(28)); 0.97 (s, Me(19)); 1.00 (d, J = 6.8, Me(21)); 3.15 (d, J = 4.8, H-C(6)); 4.05 (m, H-C(3)); 5.16 (dd, J = 15.6, 8.0, H-C(22)); 5.18 (dd, J = 15.2, 7.2, H-C(23)); 5.38 (m, H-C(7)). 13 C-NMR (CDCl₃): 12.3 (q, C(18)); 17.6 (q, C(28)); 18.3 (q, C(19)); 19.6 (q, C(27)); 19.9 (q, C(26)); 21.1 (q, C(21)); 22.1 (t, C(11)); 22.8 (t, C(15)); 27.9 (t, C(16)); 30.8 (t, C(2)); 32.7 (t, C(1)); 33.0 (d, C(25)); 37.2 (s, C(10)); 39.3 (t, C(12)); 39.5 (t, C(4)); 40.4 (d, C(20)); 42.8 (d, C(24)); 43.8 (s, C(13)); 43.8 (d, C(9)); 54.9 (d, C(14)); 55.9 (d, C(17)); 58.3 (MeO, C(6)); 67.8 (d, C(3)); 76.3 (s, C(5)); 82.4 (d, C(6)); 114.9 (d, C(7)); 132.0 (d, C(23)); 135.4 (d, C(22)); 143.6 (s, C(8)). EI-MS: 444 (6, M⁺), 426 (80), 411 (26), 393 (40), 377 (100), 301 (11), 269 (32), 251 (76).

REFERENCES

- [1] B.-J. Li, C. Wan, X.-K. Xu, Acta Bot. Yunnan. 1991, 13, 432.
- [2] M. J. Chisholm, C. Y. Hopkins, J. Am. Oil Chem. Soc. 1996, 43, 390.
- [3] R. Mukherjee, A. Chatterjee, Tetrahedron 1966, 22, 1461; S. N. Ganguly, Phytochemistry 1970, 9, 1667; S. D. Sastry, G. R. Waller, Phytochemistry 1972, 11, 2241.
- [4] A. G. Campani, L. Barbieri, E. Lorenzoni, T. Stirpe, FEBS Lett. 1977, 76, 173.
- [5] R. G. Powell, D. Weisleder, C. R. Smith, J. Org. Chem. 1981, 46, 4398.
- [6] R. G. Powell, D. Weisleder, C. R. Smith, J. Kozlowski, W. K. Rohwedder, J. Am. Chem. Soc. 1982, 104, 4929.
- [7] R. G. Powell, C. R. Smith, R. D. Plattner, B. E. Jones, J. Nat. Prod. 1983, 46, 660.
- [8] Z.-Z. Du, H.-P. He, B. Wu, Y.-M. Shen, X.-J. Hao, Helv. Chim. Acta 2004, 87, 758.
- [9] A. C. Pinto, M. L. Patitucci, R. S. Da Silva, P. P. S. Queiroz, A. Kelecom, Tetrahedron 1983, 39, 3351.
- [10] A. A. Craveiro, E. R. Silveira, Phytochemistry 1982, 21, 2571.
- [11] R. W. Denton, W. W. Harding, C. I. Anderson, H. Jacobs, S. McLean, W. F. Reynolds, J. Nat. Prod. 2001, 64, 829.
- [12] S. Sutthivaiyakit, N. N. Nakorn, W. Kraus, P. Sutthivaiyakit, Tetrahedron 2003, 59, 9991.
- [13] A. Espinel-Ingroff, T. White, M. A. Pfaller, in 'Manual of Clinical Microbiology', 7th edn., American Society for Microbiology, ASM Press, Washington DC, 1999, p. 1640.
- [14] G. Topcu, A. Ulubelen, C. Eris, Phytochemistry 1994, 36, 743.
- [15] A. G. Gonzalez, E. A. Ferro, A. G. Ravelo, Phytochemistry 1987, 26, 2785.

Received August 7, 2006